Det 21. Landsmøte i kjemi

Foredrag - Abstracts

Fellesarrangemnetet står først, ellers er foredragene nummerert etter faggruppe:

FE - Fellesarrangement

AN - Analytisk kjemi

KA - Katalyse

HI - Kjemiens historie

KI - Kjemometri

UN - Kjemiundervisning

KM - Kvantekjemi og modellering

MK - Makromolekyl- og kolloidkjemi

MA - Matkjemi

OR - Organisk kjemi

UM - Uorganisk kjemi og materialkjemi

Postere (kommer)

Dette dokumentet oppdateres etterhvert som abstractene kommer inn.

FE - Fellesarrangement




Truls Norby

Kjemisk Institutt, Universitetet i Oslo

Starting my first research in inorganic chemistry, I stumbled across hydrogen where and when I and everyone else did not expect to find it – it is so common and yet so un-common. It makes bonds more different than any other element – polar and purely covalent as protons and atoms, metallic when it pleases, and ionic as hydride ions. Consequently, it shows up in very different forms and locations and has taken me for a journey to my roots in physical chemistry and to electrochemistry – some things discovered and some mysteries remaining. Hydrogen holds a historical role in the establishment of major Norwegian industry, and we today host world-leading production of electrolyzers for the emerging markets of hydrogen for storage and as carrier of renewable electrical energy.

Many different types of solids contain or may take up water and become solid-state proton conductors by various mechanisms of transport. They may be used as electrolytes in novel types of fuel cells and electrolyzers for hydrogen and renewable energy, as well as in electrocatalytic reactors for upgrading natural gas to liquids or hydrogen with minimal carbon emissions or with carbon capture and storage. The research involves experimental and ab initio computational methods to understand hydrogen in its various forms from gas phase, via surfaces and charge transfer at electrode interfaces, into mobile ions in crystalline or liquid-like condensed phases.


Bottom-up Assembly of Active, Autonomous and Complex Bioinspired Systems with Adaptive Behaviour

Daniela Wilson

Systems Chemistry, Radboud University Nijmegen, Institute for Molecules and Materials Nijmegen, The Netherlands

Self-powered artificial motile systems are currently attracting increased interest as mimics of biological motors but also as potential components of nanomachinery, robotics, and sensing devices [1]. We have recently demonstrated a supramolecular approach to design synthetic nanomotors using self-assembly of amphiphilic block copolymers into polymersomes and the controlled folding of the vesicles under osmotic stress into a bowl shape morphology [2]. The folding process can be precisely controlled to generate different complex architectures [3] with adjustable openings and selective entrapment of inorganic catalysts [4,5] enzymes or multiple enzymes working together in a metabolic pathway [6,7]. Control of the speed and behaviour of the nanomotors is possible due to integration of regulatory feedback and feedforward loops in the enzyme networks designed to preserve energy and run the motors at even lower concentrations of fuel eg. 0.05 mM Glucose. Movement in both blood serum and plasma at physiological concentrations of substrates is consequently demonstrated. The nanomotor is now not only running at low concentrations of fuel but also able to regulate it's fuel consumption to achieve the same output speed showing adaptive behaviour. Recent developments on greater control over the movement of the nanomotors under chemical gradients or temperature will be presented [4,7]. Additional manipulation of the nanomotors under external stimuli and their biomedical applications will be discussed [6,7].

Acknowledgement. This work was supported in part by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-20012)/ERC-StG 307679 "StomaMotors".


This work was supported in part by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-20012)/ERC-StG 307679 (StomaMotors).

  1. a) Abdelmohsen, L. K. E. A., Peng, F., Tu, Y. Wilson, D. A., J. Mater. Chem. B., 2014, 2, 2395-2408. (b) Tu, Y. Peng, F. Adawy, A. Men, Y.; Abdelmohsen, L.K.E.A.; Wilson, D. A. Chem. Rev. 2016, doi: 10.1021/acs.chemrev.5b00344 c) Fei Peng, Yingfeng Tu, Daniela A. Wilson Chem. Soc. Rev. 2017, DOI: 10.1039/C6CS00885B
  2. (a) Wilson, D.A., Nolte, R, J. M., van Hest, J.C.M. Nature Chem. 2012, 4, 268-274. b) Wilson, D.A., Nolte, R, J. M., van Hest, J.C.M. J. Am. Chem. Soc., 134, 9894, (2012). (b) Wilson, D.A., de Nijs, B., van Blaaderen, A., Nolte, R, J. M., van Hest, J.C.M., Nanoscale, 2013, 5, 1315.
  3. (a) R.S.M. Rikken, H. Engelkamp, R.J.M. Nolte, J.C. Maan, J.C.M. van Hest, D.A. Wilson& P.C.M. Christianen "Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly", Nat. Commun 2016, doi:10.1038/NCOMMS12606 (b) Fei Peng, Nannan Deng, Yingfeng Tu, Jan C.M. van Hest, Daniela A. Wilson, Nanoscale 2017 DOI: 10.1039/C7NR00142H (b) 
  4. a) Abdelmohsen, L. K. E. A., Nijemeisland, M, Pawar, G. M. Janssen, G.-J. A. Nolte, R. J. M., van Hest,  J. C. M. & Wilson, D.A. *, ACS Nano, 2016, 10 (2), pp 2652-2660. b) Peng, F. Tu, Y. Pierson, L., van Hest, J. C. M., Wilson, D. A.*, Angew. Chem. Int. Ed. 2015, 54 (40) 11662-11665
  5. a) R. Rikken, R.J.M. Nolte, J.C. Maan, J.C M van Hest, D. A. Wilson P.C.M. Christianen, Soft Matter, 2013, DOI: 10.1039/C3SM52294F R. Rikken, R.J.M. Nolte, J.C. Maan, J.C M van Hest, P.C.M. Christianen, D. A. Wilson Chem Commun, 2013, DOI:10.1039/C3CC47483F
  6. a) Rhee, P. G.; Rikken, R. S.; Nolte, R. J. M., Maan, J. C., van Hest, J. C. M., Christianen, P. C. M. and Wilson, D. A.* Nature Commun. 5, 2014, doi: 10.1038/ncomms6010. b) Fei Peng, Yingfeng Tu, Jan C.M. van Hest, Wilson, D. A.*, Adv. Mater., 2016, DOI: 10.1002/adma.201604996.
  7. (a) Yingfeng Tu, Fei Peng, Xiaofeng Sui, Paul White, Jan C.M. van Hest, Wilson, D. A. Nature. Chem. 2017 DOI: 10.1038/nchem.2674. (b) Yingfeng Tu, Fei Peng, Alain Andre, Yongjun Men, Daniela A. Wilson*, ACS Nano 2017, DOI:10.1021/acsnano.6b08079 (c) Fei Peng, Yingfeng Tu, Ashish Adhikari, Jordi J.C.J Hintzen, Dennis Lowik, Daniela A. Wilson* Chem Commun 2017, 53, 1088-1091. (d) Fei Peng, Yongjun Men, Yingfeng Tu, Daniela A. Wilson, Adv. Funct. Mater. 2018, 10.1002/adfm.201706117 (e) Yingfeng Tu, Fei Peng, Paul B. White, Daniela A. Wilson, Angew. Chem. Int. Ed. 2017, doi: 10.1002/anie.201703276, 56 (26), 7620-7624


Molecular Spin Switches

R. Herges

Otto-Diels Institute for Organic Chemistry, University of Kiel, Germany
Magnetic bistability at room temperature, such as the orientation of magnetization used in magnetic storage media, or spin flips in spin crossover transition metal complexes are typical solid-state phenomena. Six years ago, we published the first bistable molecular system [1]. Our spin switches are based on a Ni-porphyrin equipped with a photochromic azogroup that moves an axial ligand up and down upon irradiation with violet (430 nm), and green light (530 nm). By changing the coordination number, the Ni2+ reversibly changes its spin state from singlet (diamagnetic) to triplet (paramagnetic). The switching efficiency in both directions is 100% within the accuracy of NMR and UV spectroscopy, and there is no fatigue after more than 100 000 switching cycles. Potential applications are the use as switchable contrast agents for MRI in interventional radiology for patients suffering from stroke or myocardial infarction [2]. Further developments are aiming at measuring temperatures or pH with high spatial 3D resolution by MRI in deep tissue.

To replace Ni2+ by physiologically benign Fe3+, and to increase the change in magnetic moment (Ni2+ : ΔS=1, Fe3+ : ΔS=2) we developed a molecular spin switch based on Fe(III) tetraphenyl porphyrin and a custom-build azopyridine ligand. Again switching between low-spin (S=1/2) and high-spin (5/2) is close to quantitative, and no fatigue was observed after several hundred cycles [3].

Spin switching in iron porphyrins is the key step in a number of enzymatic reactions, particularly in C-H activation (e.g. cytochrome P450). Our system provides the basis for the development of artificial cytochrome type complexes.

Figure 1

Figure 1: Spin switching with iron.

  1. S. Venkataramani, U. Jana, M. Dommaschk, F. D. Sšnnichsen, F. Tuczek, R. Herges, Science 2011, 331, 445.
  2. M. Dommaschk, M. Peters, F.Gutzeit, C. Schuett, C. Naether, F.D. Soennichsen, S. Tiwari,C. Riedel, S. Boretius, R. Herges, J. Am. Chem. Soc. 2015, 137, 7552.
  3. unpublished.


Industry lecture

Radionuclides and cancer treatment: How to succeed

Roy Larsen

Oncoinvent AS

Radionuclides have been used for cancer treatment for almost a century. Initially gamma and beta emitters were used but later alpha emitters attracted a substantial attention. Criterion for successful product development should be determined before initiation of the clinical phase of product development. The product candidate’s chemical and physical properties must be carefully considered, and synthesis route should be adaptable to industrial scale. The product candidate must show consistent antitumor activity and acceptable safety profile in the preclinical tests and dosimetry estimates for human use should indicate appropriate benefit to risk ratio. Sufficient patent protection is needed to attract investors.

Radionuclides and properties are addressed, and examples of clinical products are presented.

Norwegian inventions in the field are presented and the international trends in the field are discussed. 


Integrating cryogenic ion chemistry and spectroscopy: Capture and characterization of reaction intermediates in homogeneous catalysis

Mark Johnson

Yale Univerisity
The coupling between ambient ionization sources, developed for mass spectrometric analysis of biomolecules, and cryogenic ion processing, originally designed to study astrochemistry, creates a new and general way to capture transient chemical species and elucidate their structures with optical spectroscopies. Advances in non-linear optics over the past decade allow single-investigator, table top lasers to access radiation from 550 cm-1 in the infrared to the vacuum ultraviolet. When spectra are acquired using predissociation of weakly bound rare gas "tags", the resulting patterns are equivalent to absorption spectra and correspond to target ions at temperatures below 10K. Taken together, what emerges is a new and powerful structural component to traditional mass spectrometric analysis. Recent applications ranging from the mechanisms of small molecule activation by homogeneous catalysts to the microscopic mechanics underlying the Grotthuss proton relay mechanism in water emphasize the generality and utility of the methods in contemporary chemistry.


Semi-artificial Photosynthesis

Erwin Reisner

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
In photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity and the water oxidation enzyme Photosystem II is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. This presentation will summarise our progress in the development of protein film photoelectrochemistry as a technique for the activity of this enzyme adsorbed onto an electrode surface to be studied.[1] Materials design enabled us to develop 'tailor-made' 3D electrode scaffolds for optimised integration of the 'wired' enzyme and these investigations yielded valuable insights into Photosystem II function. Examples are the identification of unnatural charge transfer pathways to the electrode and the elucidation of O2 reduction pathway that short-circuit the known water-oxidation process.[2]

The integration of Photosystem II in a photoelectrochemical circuit has enabled the in vitro re-engineering of natural photosynthetic pathways. We assembled an efficient semi-artificial water splitting cell driven by light through the rational wiring of Photosystem II to a H2 producing enzyme known as hydrogenase (Figure 1).[3] This hydrogenase displays unique properties for water splitting applications as it displays good H2 evolution activity, little product (H2) inhibition and some tolerance towards O2.[4] The bio-hybrid water splitting cell shows how we can harvest and utilise electrons generated during water oxidation at Photosystem II electrodes for the generation of renewable H2 with a wired hydrogenase through a direct pathway unavailable to biology. Progress in the assembly of bias-free tandem water splitting cells with wired enzymes and the integration of robust live cyanobacteria in 3D structured electrodes will also be discussed.[5]

Figure 1

Figure 1. Schematic representation of a semi-artificial water splitting system. Water is photo-oxidized and O2 generated at a Photosystem II-containing photoanode and aqueous protons are reduced at a hydrogenase-based cathode. Enzyme-integration was optimised by using a hierarchical ITO architecture.

  1. Kato, Zhang, Paul & Reisner, Chem. Soc. Rev., 2014, 43, 6485-6497.
  2. Zhang, Sokol, Paul, Romero, van Grondelle, & Reisner, Nature Chem. Biol., 2016, 12, 1046-1052.
  3. Mersch, Lee, Zhang, Brinkert, Fontecilla-Camps, Rutherford & Reisner J. Am. Chem. Soc., 2015, 137, 8541-8549.
  4. Wombwell, Caputo & Reisner, Acc. Chem. Res., 2015, 48, 2858-2865.
  5. Zhang, Bombelli, Sokol, Fantuzzi, Rutherford, Howe & Reisner, J. Am. Chem. Soc., 2018, 140, 6-9.

AN - Analytisk kjemi


ISO/IEC 17025:2017 - en oppdatert versjon av verdens mest brukte akkrediteringsstandard som omfatter generelle krav til prøvings- og kalibreringslaboratoriers kompetanse

Oversikt over endringer og likheter sammenlignet med ISO/IEC 17025:2005.

Maarten Aerts

Norsk Akkreditering
Foredraget er rettet mot laboratorie-ansatte som ønsker å lære mer om ISO/IEC 17025:2017 som kompetansestandard. Akkrediteringsansvarlig i Norsk akkreditering, Maarten Aerts, vil gjennomgå den nye oppbyggingen og strukturen av ISO/IEC 17025:2017, forklare hensikten og filosofien bak den nye versjonen, samt gjennomgå noen sentrale kravelementer som er oppdatert siden 2005-versjonen av standarden.


Validering av metode - Hvorfor, hvordan og når er det nødvendig?

Elin Lovise Folven Gjengedal
Norges miljø- og biovitenskapelige universitet, Fakultet for miljøvitenskap og naturforvaltning, Ås
Hva er bakgrunnen og begrunnelsen for metodevalidering? Eurachem Guiden “The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics” forklarer hvorfor, hvordan og når validering av en analysemetode er nødvendig [1]. Foredraget vil handle om arbeidet med guiden, hvordan et valideringsstudium bør utføres og hvor mye som skal inngå i arbeidet (validering/verifisering), forklaring på de ulike valideringsparameterne, oppfølging av valideringsstudien og dokumentasjon på analysemetoden.
Figur 1. Metodevalideringsprosessen [1]. Metodevalidering består av et studium hvor ulike valideringsparametere blir vurdert og deretter sammenlignet med analytiske krav. Metodens egnethet bestemmes av hvordan metoden utfører når den utpekte analytikeren bruker det tilgjengelige utstyret/fasilitetene.

  1. B. Magnusson and U. Örnemark (eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014). ISBN 978-91-87461-59-0. Available from


Utfordringer ved bestemmelse av deteksjonsgrenser

Grethe Wibetoe

Kjemisk institutt, Universitetet i Oslo
Ved bestemmelse av analytter i sporkonsentrasjoner er det nødvendig å etablere deteksjonsgrenser (LOD) for analysemetodene. Metodens LOD er kanskje den valideringsparameteren som har vært gjenstand for mest diskusjon gjennom tidene og er vanskeligst å etablere – spesielt for komplekse analysemetoder.

Det er flere tilnærminger til bestemmelse av LOD, men metoden basert på å multiplisere standardavviket til blankprøve med en konstant (LOD = k·Sblank) er etter hvert blitt den mest vanlige og anerkjente metoden - der det er praktisk å anvende den. Metoden er for eksempel beskrevet i Eurachems valideringsguide for analysemetoder fra 2014 [1].

Selv om utrykket for bestemmelse av LOD er enkelt, er det mange spørsmål knyttet til den praktiske gjennomføringen – spesielt for å få en mest mulig realistisk LOD. Rapportering av resultater nær og under LOD er også et tema som trengs å diskuteres.

Presentasjonen vil gi en kort teoretisk bakgrunn for metoden for bestemmelse av LOD, og forskjellige utfordringer for å kunne bestemme en realistisk deteksjonsgrense for analysemetoden vil bli diskutert.

  1. B. Magnusson and U. Örnemark (eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014). ISBN 978-91-87461-59-0. Available from


Analytical challenges in Forensic Toxicology

Veronica Horpestad Liane

Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital
The Department of Forensic Sciences provides scientific based knowledge at a high international level for use in criminal and civil law. At the section for forensic toxicological analytics, biological samples mainly received from the police are analyzed. High quality analytical methods are required for the analysis of pharmaceuticals and drugs of abuse within this discipline as the results may cause legal sanctions.

In this presentation method validation, measurement of uncertainty and safety margins will be focused. Analytical challenges due to development in the pharmaceutical and illicit drug market will also be mentioned.


Kjemiske våpen – jakten på bevis.

Bent-Tore Røen

Forsvarets Forskningsinstitutt
Kjemiske våpen er innretninger som inneholder giftige kjemikalier, med en mekanisme for å spre kjemikaliene i lufta, for eksempel i form av en bombe. På tross av stor internasjonal oppslutning om forbud mot bruk av kjemiske våpen har giftige kjemikalier den senere tiden blitt brukt i stor skala i Syria og Irak, samt i målrettede attentat mot enkeltpersoner i Malaysia og Storbritannia. Slike hendelser anses som grove brudd på folkeretten da de påfører store lidelser for dem som blir eksponert, ofte med dødelig utfall.

For å overvåke at den siste internasjonale avtalen om forbud mot kjemiske våpen blir respektert (Kjemivåpenkonvensjonen av 1997), ble Organisasjonen for forbud mot kjemiske våpen (OPCW) opprettet. En av oppgavene til OPCW er å føre bevis i tilfeller der kjemiske våpen har blitt brukt, for å kunne stille aktørene til ansvar for sine gjerninger. OPCW gjennomfører inspeksjoner der blant annet bevismateriale blir samlet inn i form av jord, bygningsmaterialer, klær m.m., eller biologisk materiale fra antatt forgiftede personer.

For å kunne etterprøve kjemivåpenkonvensjonen er OPCW avhengig av laboratorier som kan analysere prøvene, og som tilfredsstiller deres krav til kvalitet og kompetanse. I tillegg må laboratoriene kunne håndtere svært giftige kjemikalier på en sikker måte, og ha tilgang til eller være i stand til å syntetisere relevante referansematerialer. Laboratoriene må hvert år også delta i kvalitetstester ved at de mottar prøver med ukjent innhold, der alle relevante kjemikalier må finnes og rapporteres i henhold til gitte kvalitetskrav. OPCW har i dag et tjuetalls designerte laboratorier, og Forsvarets forskningsinstitutts (FFIs) laboratorium på Kjeller er i ferd med å oppnå en slik OPCW-designasjon.


Pollutants in the Arctic.

Roland Kallenborn1, Simon Wilson2, Lars-Otto Reiersen3

1. Norwegian University of Life Sciences (NMBU), Ås & University Centre in Svalbard (UNIS), Longyearbyen; 
2. Arctic Monitoring and Assessment Programme (AMAP), Tromsø;
3. Arctic Knowledge, Tromsø
The current developments and applications of new, highly sensitive trace analytical methods allowed identification and quantification of a still increasing number of contaminants of emerging concern in the Arctic environment (CEAC = contaminants of emerging Arctic concern). The recently published and updated AMAP report on CEACs are an impressive testimony of the wide array of contaminants currently investigated and monitored in the Arctic Environment.

Earlier source elucidation for legacy organic pollutants identified long-range transport as a major pollutant source for the Arctic. However, the thorough investigation of emerging pollutants revealed a more complex picture. For instance, the evaluation of transport pathways, chemical properties and fate modelling revealed that precursor compounds of selected poly- and perfluoralkyl substances (PFAS) are transported into the Arctic and finally transformed into the well known the transformation products (i.e. PFOS and PFOA) found ubiquitously even in Polar regions.

Based on new scientific assessments on compound specific local sources and complex transport pathways, the Arctic Monitoring and Assessment Programme (AMAP) has, thus, expanded the current assessment strategies. A list of more than 300 CEACs is currently discussed for priority screening in the Arctic.

This list includes modern flame retardants (i.e. phosphorous containing FRs), personal care products (cyclic siloxanes), pharmaceuticals, surfactants, food stabilizing chemicals and many more (for comprehensive information see the current AMAP report on contaminants of emerging concern).
Our presentation will illustrate the implications of these new findings for the in-depth environmental research, regional screening, monitoring activities and regulatory strategies not just for the Arctic environment. In addition, the final implementation in regional and even global regulation frameworks will be discussed and elucidated.

The close interdisciplinary linkage between modern environmental chemistry, toxicology, fate modelling on the one side and monitoring, environmental assessment and regulation on the other is considered as mandatory for the balanced pollution regulations in a changing Arctic with potential conflict scenarios between environmental concerns and geopolitical, economic and strategic interests in the region.


Organ on a chip: analysis of mini-organs for personalized medicine.

Frøydis Sved Skottvoll

Department of Chemistry, University of Oslo
Current preclinical models (e.g. cell culture- and animal models) often provide data of poor predictive value, thus complicating and delaying conclusions on therapeutic interventions. For this reason, recent advances in tissue engineering and microfabrication have contributed to the development of an “Organ on a Chip”, a microfluidic chip constructed with the purpose of better reconstituting the complexity of human tissues and organs [1].

As the “Organ on a Chip” platform allows for both real-time manipulations and functional readouts, the analytical possibilities are numerous [2, 3]. Integrating the chip unit with a highly miniaturized liquid chromatography mass spectrometry system would provide with unprecedented sensitivity.

Even though the “Organ on a Chip” analytical platform is still in its infancy, this microfluidic intervention is predicted to have a game changing impact on drug screening analysis, diagnosis and personalized medicine.

  1. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology. Vol. 32 (2014) 760-772.
  2. Wikswo, J.P., F. Block, D.E. Cliffel, C.R. Goodwin, C.C. Marasco, D.A. Markov, D.L. McLean, J.A. McLean, J.R. McKenzie, and R.S. Reiserer, Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Transactions on Biomedical Engineering. Vol. 60 (2013) 682-690.
  3. van Midwoud, P.M., J. Janssen, M.T. Merema, I.A. de Graaf, G.M. Groothuis, and E. Verpoorte, On-line HPLC analysis system for metabolism and inhibition studies in precision-cut liver slices. Analytical Chemistry. Vol. 83 (2010) 84-91.


Metabolomics with mass spectrometry: a powerful tool for clinical analyses.

Skogvold HB1, Sandås EM1, Østeby A1, Rootwelt H1, Arnesen CE1, Wilson SRH2, Rønning PO3, Elgstøen KBP1

1. Oslo University Hospital, Oslo, Norway
2. University of Oslo
3. Oslo Metropolitan University
Reliable analysis of biomarkers is essential for correct diagnosis and monitoring of inborn errors of metabolism (IEMs), as is the topic of this presentation.

We have previously developed an LC-Orbitrap MS method for untargeted metabolomics of dried blood spots (DBS). This method has been substantially improved and simplified using only one DBS punch, extraction with 80% aqueous methanol with formic acid (mix at 700 rpm, 45°C, 45 min). A mobile phase gradient and analysis time of 27.5 min ensures sufficient separation while maintaining good signal intensity (scan range m/z 50-750, resolution 70 000, electrospray 3.5 kV).

The method is included in research protocols and will be used to detect differences between healthy controls and patients with various IEMs to evaluate existing biomarkers and possibly identify new and better ones. For assessment of the DBS method’s sensitivity in detecting metabolic changes, we conducted an experiment with controlled diet and 36 hours of fasting in six healthy volunteers.

Analytical evaluation revealed excellent results (retention time variation 0.2 % and peak area variation 1-5 % for all analytes). The controlled diet experiment showed that fasting induced changes in the metabolome as well as clustering of results in Principal Component Analysis plots from healthy volunteers when changing from a free to a controlled diet. This demonstrates that the DBS-metabolome is significantly affected by diet and that the method developed is suitable to identify metabolic changes.

The DBS metabolomics method showed excellent analytical performance and ability to identify changes in the blood metabolome reflecting altered physiologic states induced by dietary intervention. The method will be used in research to characterize metabolic states and changes in disease, controlled intervention and during normal daily life activities in order to identify better biomarkers for diagnosis and monitoring of patients with IEMs.


Sporelementer i sjømat og andre marine prøver -Status og utvikling innen analysemetoder.

Veronika Sele

Sporelementer som arsen, kvikksølv og selen finnes i spormengder i miljøet, der sjømat og marine prøver inneholder generelt høyere nivå sammenlignet med terrestriske prøver. For analyser av sporelementer benyttes ofte ICP-MS (induktivt koblet plasma masse spektrometer). Dette instrumentet er svært sensitivt og elementspesifikt, og har vokst frem som et av de mest anvendte instrumentene innen sporelementanalyser. For noen sporelementer finnes det ulike kjemiske former, eller element spesier. Noen spesier, som for eksempel metylkvikksølv og uorganisk arsen er mer giftig enn andre spesier, og det er derfor viktig å ha verktøy for å kunne bestemme disse. For analyser av elementspesier blir ICP-MS koblet til en kromatografisk separasjon som HPLC (høytrykks væskekromatografi) eller GC (gass kromatografi). Elementer og metaller kan også finnes i form av nanopartikler. Analyse av nanopartikler ved bruk av sp-ICP-MS (single particle ICP-MS) har vokst frem som et forskningsfelt de siste åra. I denne presentasjonen vil det fortelles om bakgrunnen for analyser av sporelementer, og om utviklingen og status innen analysemetoder for sporelementer; med fokus på analyse av sjømat og andre marine prøver.


Measuring with an MC-ICPMS, examples in earth sciences

Cedric Hamelin

Abstract kommer ...


Den norske NMR-plattformen – En plattform for dine kjemiske analyser

Jarl Underhaug

Universitetet i Bergen
NMR, eller kjernemagnetisk resonans, er en essensiell teknikk innen kjemisk-, molekylærbiologisk- og medisinsk analyse. Kjemikere bruker blant annet NMR til å kvalitetssikre organiske synteser og til å karakterisere nye forbindelser, mens molekylærbiologier bruker NMR til strukturbestemmelse av proteiner og til å studere interaksjoner med f.eks legemidler. I industrien brukes NMR blant annet til kvalitetssikring av fødevarer. NMR utvikles også til å bli et diagnostisk verktøy innen medisin. Dessverre krever NMR stort og dyrt utstyr.

Den norske NMR-plattformen er en nasjonal infrastrukturplattform finansiert av Forskningsrådet. Hovedformålet med plattformen er å gi forskere, både ved universitetene og i industrien, tilgang til moderne høyfelts NMR-spektrometre, utstyr som ofte er for dyrt for institutter og mindre bedrifter. Plattformen består av tre moderne, kraftige NMR-spektrometre som er plassert ved NTNU, Universitetet i Oslo og Universitetet i Bergen.

Foredraget vil fokusere på NMR generelt, hvilke muligheter den nye plattformen gir og hvordan man kan få tilgang til instrumenteringen. Det blir tatt utgangspunkt i instrumenteringen som finnes ved UiB, men de fleste analysene kan også utføres ved UiO og NTNU.


Bruk av kjemometriske metoder i analytisk kjemi.

Knut Dyrstad

KD Metrix
The most common multivariate methods used will be shortly presented followed by examples of applied multivariate analysis in the development of various analytical methods and corresponding multivariate / statistical interpretation of analytical output. Relevant software and how to approach chemometrics for a ‘beginner’ will be discussed.

KA - Katalyse


Probing Active Species in Catalysis – Application of Advanced X-ray Techniques

Moniek Tromp

Materials Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
Detailed information on the structural and electronic properties of a catalyst or material and how they change during reaction is required to understand their reaction mechanism and performance. An experimental technique that can provide structural as well as electronic analysis and that can be applied in situ/operando and in a time-resolved mode, is X-ray spectroscopy. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is powerful in determining the local structure of compounds including amorphous materials and solutions, since long-range order is not required. Combined X-ray Absorption and X-ray Emission spectroscopy (XAS and XES resp.) provides detailed insights in the electronic properties of a material. Detailed information about the materials in their dynamic chemical active environment can thus be obtained and structure/electronic – performance relationships and reaction mechanisms derived. A combination of spectroscopic techniques (e.g. UV-Vis, IR) gives complementary information about the system under investigation.

Over the last years, different approaches have been reported to allow operando time resolved XAS on catalytic systems, mostly solid-gas. Our group has developed stopped-flow methodologies allowing simultaneous time-resolved UV–Vis/XAS experimentation on liquid systems down to the millisecond (ms) time resolution [1]. Low X-ray energy systems (light elements) or for low concentrated systems, longer XAS data acquisition times in fluorescence detection are required and therefore a stopped flow freeze-quench procedure has been developed [2]. Pushing the time-resolution has been achieved by synchronizing the synchrotron bunches with an optical laser in order to perform fast pump-probe experiments [3] or micro-reactors for modulation excitation experiments [4].

Developments in XAS using new instrumentation and data acquisition methods while selecting specific X-ray energies provide this more detailed electronic information [5]. High energy resolution XAS, XES and Resonant Inelastic X-ray Scattering (RIXS) provide very detailed electronic information on the systems under investigation. The secondary spectrometer design also opens up lab based spectrometer designs as will be demonstrated.

The methodologies and instrumentation have been developed and applied to a wealth of materials science, for homogeneous and heterogeneous catalysis to batteries and fuel cells as well as art objects. In this lecture, several examples will be given with an emphasis on homogeneous catalysis, providing insights in activated species and reaction mechanisms of selective oligomerisation reaction.

  1. e.g. Tromp M. et al. Organometallics 2010, 29, 3085–3097.
  2. Bartlett S.A. et al.  J. Catal. 2011, 284, 247–258; ACS Catalysis 2014, 4, 4201; Catal. Sci. Techn. 2016, 6, 6237; Tromp, M. et al, under review.
  3. Tromp, M. et al. J. Phys. Chem. B 2013, 117(24), 7381–7387.
  4. Tromp, M. manuscript in preparation.
  5. e.g. Thomas, R. J. et al. J. Phys. Chem. C 2015, 119(5), 2419–2426; Tromp M. et al, under review.


From Homogeneous to Heterogeneous catalysis: Use of Microporous Solids as Macroligands

Jéróme Canivet

Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne, France.
At the molecular scale, the integration of the catalytically active centers into a solid support without loss of performance compared to the homogeneous analog is still a major challenge. In this context, a molecularly defined support as macroligand, i.e. a solid acting like the ligand in the corresponding molecular complex, can be considered as a key to bridge the gap between molecular and heterogeneous catalysis. Metal-Organic Frameworks and purely organic microporous polymers are promising candidates. In particular, porous frameworks made by the repetition of a coordinating motif, like the bipyridine motif are of a high interest as far as bipyridines are widely used as chelating ligand for molecular catalysts.[1,2]. We show that both homogeneous and heterogenized catalysts follow the same linear correlation between the electronic effect of the ligand, described by the Hammett parameter, and the catalytic activity as exemplified in two reactions. This correlation highlights the crucial impact of the local electronic environment surrounding the active catalytic center over the long-range framework structure of the porous support. The gap between molecular and heterogeneous catalysis has never been so close to being bridged. This work is carried out within the H-CCAT project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 720996. H-CCAT aims at the large scale production of MOF catalysts and at their use in the industrial production of pharmaceuticals.

  1. F. M. Wisser, P. Berruyer, L. Cardenas, Y. Mohr, E. A. Quadrelli, A. Lesage, D. Farrusseng, J. Canivet, ACS Catal., DOI: 10.1021/acscatal.7b03998 (2018)
  2. F. M. Wisser, Y. Mohr, E. A. Quadrelli, D. Farrusseng, J. Canivet, ChemCatChem, DOI: 10.1002/cctc.201701836 (2018).

HI - Kjemiens historie

KI - Kjemometri

UN - Kjemiundervisning


Vitenskap på kjøkkenet - Om kaker som (ikke) faller sammen og egg som kokes fra innsida og ut

Erik Fooladi

Høgskolen i Volda
Må biffen romtemperes før den stekes? Faller kaka sammen hvis du ikke er forsiktig når du tar den ut av ovnen? Og er det mulig å lage eplepai helt uten epler? Når du koker et egg eller setter en gjærdeig jobber du med kjemiske, biologiske og fysiske prosesser på kjøkkenet ditt. Samtidig bruker du håndverkskunnskap du har lært av andre eller ved å prøve deg fram selv. Men mat er også historie, kultur, identitet og sanseerfaringer. Sammen med professor i matvitenskap Anu Hopia (Universitetet i Turku) har førsteamanuensis Erik Fooladi (Høgskulen i Volda) skrevet den populærvitenskapelige boka «Kjemi på kjøkkenet: Om hvorfor kaka faller sammen og andre kjøkkenhistorier». I boka ønsker forfatterne å balansere kjemi, håndverk og smaksopplevelser, noe som kan gjøre matlagingen mer spennende, hodet litt klokere, og maten litt bedre. Og kanskje kan det til og med fremme kritisk tenkning? I foredraget vil Fooladi presentere boka og tenkningen bak den, og tilhørerne får være med på et sanselig eksperiment.

Bilde av boka



Hans-Petter Hersleth og Bjørn Dalhus

Universitetet i Oslo
Kjemiolympiaden har vært arrangert helt siden 1968 og Norge har vært med siden 1982. I år er det ca 75 nasjoner som skal delta. 4 elever fra hvert land konkurrerer i både praktisk laboratoriearbeid og teori. Det er "Kjemi-OL komiteen" under NKS som står for utvelgelse og opplæring av det norske laget. Dette gjør vi i tett samarbeid med Kjemisk Institutt og det matematisk-naturvitenskapelige fakultet ved UiO. Vi står også for arrangering av den norske kjemi-OL finalen som en del av uttakingsarbeidet. I dette foredraget vil vi fortelle litt om hvordan komiteen arbeider, hvilket opplegg vi har for de norske uttakskonkurransene, litt om det internasjonale nivået og også fortelle litt fra den internasjonale finalen.


Elevforsøk til bruk i kjemi programfag

Karoline Fægri og Svein Tveit

Universitetet i Oslo
Mange av kompetansemålene i kjemi 1 og kjemi 2 krever at elevene gjennomfører elevforsøk. I denne sesjonen får deltagerne prøve ut et utvalg elevforsøk som er knyttet til kompetansemål i læreplanen for kjemi 1 eller kjemi 2. Til hvert forsøk legger vi opp til en fagdidaktisk diskusjon.


Triks i Ludo for den digitale kjemilæreren

Asbjørn Aarflot

Stavanger katedralskole
Abstract kommer snart...

KM - Kvantekjemi og modellering

MK - Makromolekyl- og kolloidkjemi

MA - Matkjemi

OR - Organisk kjemi

UM - Uorganisk kjemi og materialkjemi